常微分方程:初值问题与边值问题

任何关于算法、编程、AI行业知识或博客内容的问题,可以随时扫码关注公众号「图灵的猫」,加入”学习小组“,沙雕博主在线答疑~此外,公众号内还有更多AI、算法、编程和大数据知识分享,以及免费的SSR节点和学习资料。其他平台(知乎/B站)也是同名「图灵的猫」,不要迷路哦~

 

初值问题是微分方程的初始条件,即自变量为零时的函数值;边值问题则是方程的边界条件,即自变量取某一值对应的函数值。对于一阶方程,往往只需要初始条件就可以得到方程的特解,对于二阶或者二阶以上的微分方程,则需要边界条件。

初值问题

初值问题是指在自变量的某值给出适当个数的附加条件,用来确定微分方程的特解的这类问题。如果在自变量的某值给出适当个数的附加条件,用来确定微分方程的特解,则这类问题称为初值问题。一般使用欧拉法(基于方向场)用来求解常系数系统是最常见的求解初值问题的方法,因此初值问题有时也叫作欧拉初值问题。

边值问题

边值问题是定解问题之一,只有边界条件的定解问题称为边值问题。二阶偏微分方程(组)一般有三种边值问题:第一边值问题又称狄利克雷问题,它的边界条件是给出未知函数本身在边界上的值;

给出一个常微分方程,然后有条件限制,这个条件就是两个点,这两个点构成一个区间。例如:给出一个微分方程为:y″+ m(x)y′+ n(x)y = f(x),另外再给出在求解区间[a,b]两个端点的条件:x=a时,y=c;x=b时,y=d。

相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付 19.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值